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§1. Introduction

Newton's method has orobably long been the most fre-
quently used method for solving systems of nonlinear ecua-
tions but it is most useful when an anproximate solution is
available. With the recent work of Scarf [11l], Eaves [7] ,
Saigal [6] and others, powerful new technicues have become
available for the solution of systems of nonlinear eauations.
Their approach is based on simplicial decompositions of spaces
involved and the following of a piecewise linear path to the
solution. Kellogg, Li and Yorke [10], followed by Smale [12],
and Chow, Mallet-Paret, and Yorke [3] found a related approach
for systems of smooth (differentiable) systems in which the
piecewise linear path was replaced by a smooth curve. 1In
this approach simplicial decomposition and pivoting methods
are replaced by curve following technicues which are based on
highly developed nonlinear analysis techniaues including
Newton's method and ordinary differential equations solvers,
which seem to be easier to implement. These methods are gen-
erally known as "continuation method".

The essence of the "continuation method" is "path follow-
ing". The purpose of this paper is to develop simple algo-
rithms and flow charts so that scientists may easily program
reliable curve followers. The emphasis is on simplicity and
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reliability at the expense of speed. We find that simple

routines using variable step-size differential equation sol-
vers can be made reliable. Our preliminary experiments have
utilized a fourth order Runge-Kutta solver in which we have
found it necessary in some igses to vary raoidly the step
10

.

length over a range of
| The philosophy of the approaches of Watson [13], Smale
[12] and others may be interpreted as minimizing the impor-
tance of accuracy in following the curve. In lectures Smale
i has advocated large jumps with little concern for whether the
E follower accidentally skips from one path of zeros to another
nearby one. Now, however, classes of problems are coming to
light in which it is important to remain on a simple curve.
As an example, consider the problem of solving all the roots
of a system of n polynomials in n complex variables [4]
[5) , (8] , [9] , by homotopy method. It is important to note
that it is necessary to follow a different curve to obtain
each solution. If the paths are not followed with care, solu
tions can be missed. The same necessity occurs with other ;
problems such as the inverse eigenvalue problem [1] . The
curve must be followed carefully.

Paragraphs 2 - 4 describe an algorithm which is summa-
rized in the following flow chart for following a nondegen-
erate curve to a solution. The existence of such curves is
"guaranteed with probability one" in [3] . Nonetheless §5
describes situations in which the algorithm may fail to fol-
low the curve to a point desired. In §6 numerical results

i are described. e

For convenience, we limit our discussion here to the
homotopy type algorithms as recuired by Chow, Mallet-Paret
and Yorke [3] , Alexander and Yorke [2] . To follow the so-
lution curves in the algorithms based on the global Newton
method of Smale [12] or the non-retraction method given by
Kellogg, Li and Yorke [10] are quite similar with some vari-

ations. In all these cases we follow a solution curve by
numerically integrating an initial value problem until a point

of interest is encountered.
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lEbMMRNTS AND REFINEMENTS.

1. Write Y“ - (T“,Rn)
2. Initialize To = 0
X, = initial point
0 -14 v

awh, 4= ), ¢t = )0 for an 18 digit comouter word

length.,
3. FT means the T component of the vector field, if

FT < gz. F 1is the unit vector along the curve.
4. At one point we set 4ds = 28s., That is, ASM+1 = QASM.

In fact it is more efficient to try to increase J4s less

often. In general "eguations" are Fortran statements

S. After computing AY = H‘—lH. we check |[H'Ayv|/|H| which

should be near 0. Print it out if > 10-‘.

6. One can check {Yn{ and terminate the run if IYn[ > 1010.
or terminate if the number of H' evaluations exceed say
500. Some ill-posed homotovies can have trajectories un-
bounded. One should samilarly check if Tn+1 < 0.

7. Fourth order Runga-Kutta is used to allow easy vrogramming

plus reliability (at the exvense of sveed).

Let J = [0,a] for some a > 0 and let
H: (0,1) x R" + 8" be smooth with H(0,xy) = 0 and
H(l,x) = F(x) and C : J = [0,1) R® be a smooth curve such
that

(1) lc'(s)n2 = 1 for s ¢ R (varametrization according
to arc length) where c¢'(+) = é% c(*) and I+l 1s
the usual Fuclidean norm,

(ii) H(c(s)) = 0 for s ¢ J

(ii1) H'(e(s)) has rank n for 8 ¢ J (where H' denotes
the Frechet derivative of H with respect to (t,x))
i.e. all points on the curve C are regular.

We suppose we have a regular curve, namely a curve sat-
isfying condition (i), (ii), (iii). The algorithm is for
following such a curve. Differentiating (ii) according to
arc length gives

H'(c(s))c'(s) = 0 for s ¢ R, and

te' () = ) for s ¢ R .

The algorithm recuires that we have given starting point
yo on the curve and we set c¢(0) = Yo-

(1.1)

An-J--::;-.-"-u--lll-n-—-u--iﬁlll...---“"j..



Alden Wright, (Western Michigan University), has suggested
(personal communication) that when faced with the possibility
of J|c(s)| » «», it may sometimes be wise to rescale, and

using new variables (1, x2/x1,°-',xn/xl) and f&nlx and

1!
xl/lxll. He particularly recommends this change when dealing

with systems of polynomial ecuations where the variables X4

are complex.

As we mention in the introduction, the emphasis on the
Flow Chart is the "simplicity". The numerical results in the
next section indicate that we can rely on this algorithm to
carry the path to some t which is arbitrarily close to 1,
as long as the machine precision permits. One may, of course,
set t =1 and switch to Newton method far before t reaches
jt-1] < ¢, where e is the machine accuracy. The best
strategy seems to be the following: Use Moore's Algorithm
[15] on (Tn,xn) 1€ Tn is bigger than some value, say .9,
to check if the Newton iteration on F(x) = 0 will converge
by using X, as starting point. We switch to Mewton itera-
tion if Moore's Algorithm indicates the convercgence of
Newton iteration. If Moore's Algorithm fails to guarantee
the convergence of Newton iteration, we use the path follow-
ing routine to push t one step further toward t =1 and
repeat the procedure. The implementation of this strategy
is beyond the scope of the paper.

§7. Numerical results

A series of computer exmeriments were made, implementing
the path following algorithm described in §2 - 4, for find- ’
ing all the roots of polynomials of one complex variable. %
The first example is the Wilkinson polynomial [15] of degree
20. That is,

p(z) = (2+1) (2+#2) =+« (2420) + 2292723 |
To solve p(z) = 0, we write

H(z,t) = (1-t)%(z-a)) e+ (z-a) + (1-(1-t)F)p(2)

where a, ¢ ¢ for all 1 < i <n. It can be shown that for

almost all a = (al---an) £.o, H-l(O) consists of n smooth
paths all of them are bounded and connected to t = 1. So,
N wat random", and follow each path

we choose (al,---,a ) €c
- -12
and k = 4.

individually to |t-1| < € with ¢ = 10

=-10-




(The computations are done on Univac 1108 with complex double
precision.) The results are shown on Table 1. As one can
easily see that no root is missed and the stev sizes varied
from 10-'8 o 0.4, H(Tn,xn) is sometimes as big as
1020 for points ¢ away from the curve, but this causes no
difficulty. We evaluate the volynomial as a product of 20
terms, thereby avoiding one of the difficulties of roundoff
error that Wilkinson emphasized. Nonetheless the polynomial
is cuite sensitive in the sense that the paths must be fol-
lowed cuite closely if theyv are going to be followed reliably.

The second example is the polynomials with multiple
roots. Let

po(z) = (x+1)3
and

Hy(t,z) = (1-t)%(z-a)) (z-a,) (z-ay) + Q-(1-0)F)p (2) .

Table 2 shows that Po(z) does not cause difficulty on
our algorithm.

To demonstrate the stability of our algorithm, we write

P_(2) (x+1) (x+1 + €) (x+1 - ¢)

and

]

Hc(z) (l—t)k(z-al)(z—az)(z-a3) + (1—(1-t)k)P€(z) -

Tables 3, 4, 5, 6 show the computation results for e = 107}
10_2, 10—3 and 10~5. Once again, it is shown that no roots
are missed. We also show on Tables 8, 9, 10, 11 that the al-
gorithm without angle checking is ecually reliable in cases
that solution path are "rather" smooth. While we are finding
roots of a polynomial fhat has only real roots, an additional
difficulty would occur if the roots were triple (or nearly
triple) non-real roots since our algorithm then does not
handle real roots in any special way.
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§8. Continuation versus Newton Methods

We have chosen to find roots of polynomials for thas
paper because polynomial root determination yields and inter-
esting set of highly nonlinear test problems. We make no
claim that continuation is an efficient way of finding roots
of polynomials. We do not make use of the svecial "field"

properties and in particular, after we find one root, we do

not in any sense divide it out or even take it into consid-
eration in any way for finding the other roots. We do not
f make any special search for real roots, (and having the root:
real is not even a helv). These vractices make polynomials
a reasonable set of test problems since in most nonlinear
problems, such as finding roots of systems of polynomials or
for inverse eigenvalue oroblems, special technicues are not
available. The existence of several roots in our problems
allow us to test here whether we actually follow different
paths correctly.

Given our practices we asked how Newton's method would
compare. For the Wilkinson polynomial

20
I (x+k) + 2
k=1

-23_19
X

we chose several roots. For each root xo, we chose a

starting point of the form

X, = X, + t(1l+i) .

0 0
By experimenting with several values of t, we determined

how far from the root the initial point x, could be and

0
still have Newton's method give a sequence converging to the

root Xg- We chose the direction 1+i in defining xt  as

a reasonable representative direction; given a starting point
xg, the closest root X0 might be any direction form XB'
To use Newton's method to find the foots, starting points
could be selected at random, and we test in essence how close
the starting point must be and still get convergence to that

root.




Newton's Method Newton's Method

X Converges for Does Not Converge
0 t = t =
-16.71+42.811 . .4
-16.71-2.811 il 3
-19.50+1.941 .3 .4
-19.50-1.94i . .3
Table 11.

Table 11 shows that for some of the roots Newton's
method is successful only when xg is quite close. Even
when Xo is closer to xs than any other toot, by a factor
of 7, (as is the case of the entries in Table 10) Newton's
method may fail to converge to Xg*

Often one is interested in finding only one root, but
the calculations in Table 10 suggest the nature of Newton's
method: 1local converge. When starting outside some ill-
defined boundary, Newton's method will often produce a
sequence which diverges. More work is needed to demonstrate
in much greater detail the inadeauacy of Newton's Method on
a variety of problems when compared with continuation and/or
simplicial methods.
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